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Clathrate hydrates are solid inclusion compounds with a three-
dimensional host structure of space-filling polyhedral cages formed 
by hydrogen-bonded four-connected water molecules and ac­
commodating a large variety of possible guest molecules.3 A 
group of compounds with analogous structural principles are some 
hydrates of tetramethylammonium hydroxide.4'5 The guest is 
the cation, of an appropriate size and shape to fit again into 
certain polyhedral cages of a water host structure. This is now 
anionic or proton-deficient, since it contains also the hydroxide 
ion. Nevertheless, the various host structures of the highest 
hydrates of Me4NOH are fully four-connected, i.e., with a 
hydrogen bond along every polyhedron edge.6 

The host structure of the stable form4 of Me4NOH-7.5H20 is 
composed of eight [51263] and four smaller [4258] polyhedra per 
unit cell.5 The Me4N

+ occupies the larger cage; the smaller cage 
is empty. A closely related crystal structure has now been observed 
for the new hydrated ternary hydroxide Cs(Me4N)2(OH)3-HH2O, 
where one H2O of twice the formula unit of the metal-free 
compound is substituted by another OH", while the additional 
Cs+ occupies the smaller cage. This appears to be the first instance 
in which a metal ion is found as a guest—largely inert and even 
facultative—in a clathrate hydrate polyhedral cage. 

Crystals of the new compound were grown from their melt in 
thin-walled glass capillaries using a miniature zone-melting 
technique.7 The melting point is 57 0C, as compared to 4 0C for 
the cesium-free analogue.4 The X-ray analysis8 yielded the same 
space group with very similar unit cell dimensions and comparable 
coordinates for most of the atoms. The cages, together with the 
enclosed cations, are shown in Figure 1. Besides the additional 
atomic site for the Cs+ in the smaller cage, there is a change in 
the larger one involving a disorder " of the Me4N

+. The polyhedral 
packing5 is shown in Figure 2. 
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Figure 1. Top: The larger polyhedron (26 vertices, 12 pentagonal and 
three hexagonal faces, mm symmetry) enclosing the Me4N+ ion, of which 
a 2-fold orientational disorder1' is shown separately. Bottom: The smaller 
polyhedron (16 vertices, two square and eight pentagonal faces, 422 
symmetry) with the enclosed Cs+ ion (O—O distances along edges between 
2.64 and 3.11 A, average 2.77 A) and empty in the isostructural cesium-
free compound5 (2.72-2.84, average 2.75 A). 

Figure 2. Face linking of the larger polyhedra into a tetragonal layer 
with quadratic holes, these being common faces of the smaller polyhedra 
in protruding columns. 

The Cs+ ion with its low charge is a good candidate for the 
observed phenomenon, since its size is appropriate. The quite 
uniform Cs-O distances within the smaller cage of 3.428(5) and 
3.527(3) A to eight Ol and 02 atoms each12 are evidence for a 
good fit. This is seen from recent studies of the chemically related 
«o«-clathrate hydrates CsOH-2H20 and CsOH-3H20

13 as well 
as undeuterated14 and perdeuterated15 (neutron diffraction) 
CsNa2(OH)3-6H20, which yielded an average Cs-O of 3.47 A. 

Encagement of the Cs+ ion by polyhedra of hydrogen-bonded 
water molecules in the gas phase was recently deduced from the 
observation of magic numbers for Cs+(H2O)n clusters in mass 
spectra.16 With values of n equal to 18 and 20, the smallest 

(12) For the empty cage of the isostructural cesium-free compound,5 which 
is also shown in Figure 1, the analogous distances from the midpoint of 3.261-
3.657 A reveal a somewhat less spherical shape. 

(13) Mootz, D.; Rutter, H. Z. Anorg. AlIg. Chem. 1992, 60S, 123-130. 
(14) Mootz, D.; Rutter, H. Angew. Chem. 1990, 102, 949-950; Angew. 

Chem., Int. Ed. Engl. 1990, 29, 904-905. 
(15) Mootz, D.; Rutter, H.; Heger, G. Z. Anorg. AlIg. Chem., in press. 
(16) Selinger, A.; Castleman, A. W., Jr. J. Phys. Chem. 1991, 95, 8442-

8444. 

1994 American Chemical Society 



4142 J. Am. Chem. Soc, Vol. 116, No. 9, 1994 Communications to the Editor 

isolated polyhedra identified in that way are larger than that 
stabilized in the title compound as part of a three-dimensional 
solid. 
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